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SUMMARY

This study was a theoretical and experimental investigation of thin liquid sheet flows in vacuum. A sheet

flow created by a narrow slit of width, W, coalesces to a point at a distance, L, as a result of surface tension

forces acting at the sheet edges. As the flow coalesces the fluid accumulates in the sheet edges. The observed

triangular shape of the sheet agrees with the calculated triangular result. Experimental results for L/W as a func-

tion of Weber number, We, agree with the calculated result, L/W = _SWe. The edge cross sectional shape is

found to oscillate from elliptic to _cigar _ like to _peanuC like and then back to elliptic in the flow direction. A
theoretical one-dimensional model was developed that yielded only elliptic solutions for the edge cross section.

At the points where the elliptic shapes occur there is agreement between theory and experiment.

NOMENCLATURE

Symbols

A area

c wave propagation velocity

F force

Fr Froude number

g gravitational acceleration

L len_h of sheet

l arc length, slit depth

p pressure

Q volumetric flow rate

R radius of curvature

r x-position at which edge joins main sheet

s sheet edge shape
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Subscripts

asy

C

e

max

O

$

sy

x,y,z

,I"1,0

dimensionless x-velocity

velocity components in Cartesian coordinate system

slit width

Weber number

Cartesian coordinate system

shape parameter, ratio of y-z curvature to x-y curvature

parameter related to shape parameter

viscosity

dimensionless Cartesian coordinate system

density

surface tension

sheet thickness

angle between antisymmetric waves and z-axis

antisymmetric

edge cross section

edge

maximum value

initial value

surface

symmetric

partial derivatives with respect to, or components in, Cartesian coordinates

partial derivatives with respect to, or components in, dimensionless Cartesian coordinates

INTRODUCTION

Incompressible, thin sheet flows have been of research interest for many years. Those studies were

mainly concerned with the stability of the flow in a surrounding gas. Squire (ref. 1) was the f'n'st to carry out a
linear, inviscid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and

Fraser (ref. 2) did an experimental study of the disintegration of sheet flows using several viscous liquids. They
also detected the formation of holes in their sheet flows. Hagerty and Shea (ref. 3) carried out an inviscid stabil-

ity analysis and calculated growth rates for the instability. They compared their calculated growth rates with

experimental values. Taylor (refs. 4 to 6) studied extensively the stability of thin liquid sheets both theoretically

and experimentally. He showed that thin sheets in vacuum are stable. Brown (ref. 7) experimentally investigated

thin liquid sheet flows as a method of application of thin films. Clark and Dombrowski (ref. 8) carried out a

second order stability analysis for inviscid sheet flows. Lin (ref. 9) introduced viscosity into the linear stability

analysis of thin sheet flows in vacuum. Mansour and Chigier (ref. 10) conducted an experimental study of the

break up of a sheet flow surrounded by high-speed air. Lin, Lian, and Creighton (ref. 11) did a linear stability
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analysisthat includes viscosity and a surrounding gas. Rangel and Sirignano (ref. 12) carded out both a linear

and nonlinear, inviscid stability analysis that applies for any density ratio between the sheet liquid and the sur-

rounding gas.

Now there is renewed interest in sheet flows because of their possible application as low mass radiating

surfaces (refs. 13 and 14). Because of their low mass, near immunity to micrometeoroid damage and simplicity,
sheet flows are excellent candidates for a space radiator system. The objective of this study is to investigate the

fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern

the sheet geometry will be derived and compared to experimental results. Since a space radiator will operate in

a vacuum the analysis does not include any drag force on the sheet flow.

Thin sheet flows are dominated by the surface tension forces. As a result of surface tension at the edges

of the sheet, a flow that begins with a dimension, W, perpendicular to the flow direction coalesces to a point at

a distance, L, in the flow direction. The resulting triangular sheet is ideal for a space radiator. In the following

analysis results for L/W scaling and variation of sheet thickness "r, that include a constant gravity force in the
flow direction, will be derived. Experimental results for L/W will be compared to the analytical results. Also,

analytical results for the edge cross-sectional shape will be calculated and compared with experimental results.

THEORY

Sheet Thickness and Sheet Length/Sheet Width Scaling

A sketch of the flow geometry of a thin liquid sheet is shown in figure I. Surface tension forces at the

two edges of the sheet push the edges toward the z-axis. As a result, as the flow moves in the z-direction the

edge cross-sectional area, A c, grows. In order to satisfy mass continuity the edges approach each other and

finally meet at the point z = L.

If sheet flow is to be utilized as a space radiator then the dependence of the sheet length to initial width

ratio, L/W, and sheet thickness, T, on the flow conditions must be known. In this section the L/W dependence on

the Weber number, We, will be determined. Also, since all experiments have been performed in the Earth's

gravity field the L/W and x dependence on a constant gravity force will be included.

First consider the total force exerted by the surface tension on the edges of the sheet. Consider a cross

section of the sheet taken perpendicular to the flow direction as shown in figures 1 and 2. The surface tension

pressure is crlRc, where t_ is the surface tension of the fluid and R c is the radius of curvature (ref. 15). Referring

to figure 2, the surface tension force on the infinitesimal surface area dA = dl dz is

(YdF = -_dl dz (I)

Rc

The component of this force in the x-direction is

(y
dF x - _

Rc
- -- sine dldz- - o dsdz (2)

Rc



where s is the cross-section shape and the radius of curvature, Pc, is given by

d2s

1 dx 2
m = (3)

In using (3), any curvature in the y-z plane is being neglected compared to the curvature in the x-y plane. This
is a good assumption for long (L/W > 1) sheet flows.

Substituting (3) in (2) and then integrating over the surface from s = 0 to s = x/2 will yield the x-direction

force on the upper half of the sheet edge. Therefore, the total edge force in the x--direction per unit length in the

z-direction is the following:

dFx -2 (Tt2 a s"
- .)0 ds (4)

dz [1+ (s')213/2

where the prime denotes differentiation with respect to x. Making the substitution u = s' in (4) yields

dFx - -2a f_ u

-_- (1 + u2} 3/2

du (5)

so that

dFx 20 (6)
dz

The significance of this result is that it is independent of the cross-sectional shape of the sheet. It applies as

long as the edge cross section has infinite slope (s" _ oo) at the edge (x = 0) and zero slope (s' = 0) where it

joins the constant thickness region (x = r).

The x-direction force given by (6) can be used in the integrated momentum equation for the control

volume shown in figure 2. This coordinate system is moving with the edge velocity, ue. Therefore, the x-direction

velocity is u = -u e at x = r and u = 0 at x = 0. The integrated momentum equation combined with (6) yields the
following result.

2 dF
x _ 2o (_

PrUe - dz
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Therefore,

(8)

The velocity, ue, is the velocity that a free edge of a thin liquid sheet will move regardless of the edge

shape. Taylor (ref. 6) derived this result earlier without considering the cross-sectional shape of the edge. This is

also the phase velocity, c , of the antisymmetrical wave that can exist on a plane sheet (refs. 5 and 6). Thusasy
for a constant thickness sheet moving with velocity w in the z--direction (fig. 1) stationary antisymmetrieal waves

will make an angle, lp', with the flow direction defined by the following relation (ref. 5)

sin _p'- casy - ue (9)
w w

Also, referring to figure 1,

Ue (10)tan lp =
w

Therefore, sin _p' = tan _p. For long sheets (L/W > 1), tan _p = sin ap, so the sheet edge and stationary antisym-

metrical waves (lines of constant phase) will be approximately parallel. Experimentally, these waves are

observed (fig. 16) as they have also been observed in other experiments (refs. 3, 6, and 10).

Equation (8) gives the sheet edge velocity, ue. With this result and the continuity equation, analytical
expressions for "r(z), x(z), and L/W can now be developed. Referring to figure l(a), at z = 0 the flow will be

moving in the z-direction with initial velocity, wo. Eventually, fluid that begins at some position, x, at z = 0 will

be captured by the edge with cross-sectional area A c. Therefore, for steady-state conditions the following conti-

nuity equation must be satisfied.

AcW e + "cxw = 2"roWwo (11)

In the edge cylinder the z-direction velocity is we, while in the main sheet the z-direction velocity is w. The w

velocity will be determined by the gravitational force, whereas we is determined by the combined gravitational
and surface tension forces. Rather than use the complete continuity equation (11), the following simplifying

approximation is made. We assume the flow velocity remains entirely in the z-direction until it reaches the

edge. Therefore,

TXW = ToXW o
(12)

Near the slit that creates the sheet flow viscous forces will decelerate the flow. However, Brown (ref. 7)

has shown this effect is only important near the slit. Thus, if the gravity force is in the z-direction (fig. 1) the

main sheet flow velocity, w, is governed by the following equation of motion.



dw dw
w=w_=g
dt dz

(13)

where g is the gravitational acceleration. Integration of (13) yields the following.

w 2 = w 2 + 2gz
(14)

Also, using the sheet edge velocity in the x-direction given by (8),

I
dx dx / 2_

-- = w-- =-ue =dtdz -_-_

(15)

Now substitute (14) and (12) into (15) to obtain

wo
dz

(16)

where the Weber number, We, which is the ratio of the dynamic pressure to the surface tension pressure, is

given by

2
PWo"%

We =
o

(l?)

Integration of (16) yields the following resuR for the sheet shape.

2x 1 _ 2 Fr _[ll + 2 Wi3/4 ] (18)7;-- -1

where the Froude number Fr, which is the ratio of the kinetic energy to the gravitational energy, is given by

2
w o

Fr-_
gW

(19)

When x = 0 the sheet flow will have reached its maximum leng_th, z = L. Therefore, setting x = 0 in (18) yields

the following result for L/W.

L

W

(20)
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The importance of We in determining L/W becomes obvious when (20) is expanded for large Ft. For all the

experiments carried out to date Fr > 10. For the case of no gravity field (g = 0), Fr --. oo and (20) yields

(21)

Since _/We ~ wo, (21) indicates that L will be a linear function of wo for f'Lxed Wand "ro. This was observed in

the experiments of Mansour and Chigier (ref. 10) and Chubb and White (ref. 13). Equation (21) for L/Wand the

complete expression (20) for several values of Fr are shown in figure 3. For Fr > 20 there is only a small devi-

ation from the Fr -. _o (g = 0) result. Thus for the experimental conditions of this study, (21) can be used to
estimate L/W.

Using the result (21) for L/W in (18) yields the following equations for the sheet shape in terms of the
dimensionless coordinates 2x/W and z/L.

--_= I- a I + _-_ - 1

(22)

where

a - 2Fr V_/We (23)
3

and

15 - 1 + - 1 (24)

The quantity, a, can be called the sheet shape parameter since it determines the sheet shape. For most cases of

experimental interest a > 1. For a _ 0%(22) becomes

2x z (25)--=I--- for a _
W L

Therefore, the sheet is triangular in shape for 0t >> 1. The sheet shape as given by (22) is shown in figure 4(a)

for several values of the shape parameter. For a > 1 the sheet is essentially triangular in shape. Indeed, this is

the result observed experimentally.

Now consider the variation of sheet thickness, r(z). Combining equations (12), (14), and (20) yields the

following result.

/B _ 1 +

T o

(26)
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Similarto x(z), the sheet thickness variation T(z) depends only on the shape parameter, a. Also, for no gravity

force, [5 = 0, and (26) yields T/0o = 1; in this case the sheet thickness is a constant. The sheet thickness calcu-
lated using (26) for several values of a is shown in figure 4(b). These theoretical results show that significant

thinning of the sheet occurs even for a _> 1. However, for a >_.10 negligible thinning occurs. These results have

not been verified experimentally.

Cross-Sectional Shape of Thin Liquid Sheet

In the preceding section, results for L/W and "r were derived without the need for knowing the cross-

sectional shape of the sheet edge. Now the analysis for the cross-sectional shape (s(x,z) in fig. 2) will be pre-
sented. The cross-sectional shape of the sheet edge is important in evaluating the stability of the sheet. The large

curvature (small radius of curvature) that exists in the region where the edge joins the sheet (x = r in fig. 2) can

lead to instability. This problem is currently being investigated.

As pointed out in the last section, the effect of the z-direction gravity force is negligible for the sheet

flows of interest. Therefore, only the surface tension force must be considered. In equation (3) of the previous

section, the curvature of the sheet in the x-z plane was neglected so that the surface tension force was confined

to the x-y plane. This is a reasonable assumption for flows of sufficient length (UW > 1). In that case, the

cross-sectional shape, s(x,z), increases slowly in the z-direction so that Sxx >> s= and only curvature in the x-y

plane is important. The radius of curvature is then given by (3).

For the most general case, however, curvature in the x-z plane must be included. In the following

analysis, the velocity field is assumed to be u = [u(x,z),v(x,y,z),Wo], that is, the flow velocity is constant in the

z-direction and the x-component of velocity is independent of y. Assuming irrotational flow, Bemoulli's equa-

tion applied at the surface yields:

o/11/ oUS + -- + --
(z'O

where the subscript s denotes conditions at the sheet-vacuum boundary. Since the flows of interest are in a

vacuum the only pressure appearing in (27) is the surface tension pressure, o[1/P_ + 1/Ryz], where

02s 02s

1 1 Ox2 Oz 2
+ __ = (28)

R. Os
l + +

The right-hand side of (27) is the surface tension pressure that occurs at x = 0 in figure 2 and is a function of z.

11 (29)



The shoot surface boundary condition for steady state conditions (A-4) is the following:

Os Os

v_= u__ + wo
(30)

Substituting (30) in (27) we obtain

2ok 2xI + sx + 2UsW°SxSz + W°Sz - x 213/2=

( Re1 +s 2 +Sz]

(31)

where the subscripts x and z denote partial differentiation. The edge velocity, ue, is given by (8) and the Weber

number, We, by (17); substituting these in (31) gives:

2 + 2us We Wes2 Sxx + s_ "c
1 +s x _ SxSz+ _ z]-'c[ 2/3/-2 + R---e

1 + sZ_+ Sz]J _

(32)

If the following dimensionless variables are defined,

US
x _ s 0 _ Z , 7_ r Us _ _ (33)

_ -_, q = ..._, -'_ --_, Ue

then (32) becomes:

(We'_ 2_ T ][ 2+ 2] 3/2

q,_ + qO0 =_[. s_ +

(34)

An expression for velocity, Us, is obtained from the continuity equation derived in Appendix A. By the

assumption u = u(x,z), we have us -- _, where fi is the average velocity in the x-direction. Equation (A-7) yields
the following:

Us_ 10AIOz (35)
q dAcldZ

where

A(x,z) = 2 fo x s dx'
(A-8)



and

Agz)= 2 _,<o s (A-9)

is the total cross-sectional area of the sheet edge. Equation (34) is the equation for the sheet edge shape, q, as a

function of the dimensionless coordinates _ and 0. To simplify the solution of (34), the 0 dependence of the

cross-sectional area, A, is assumed to occur through the edge length dimension, r(z). In other words, in rewriting

(A-S),

(36)

it is assumed that the integral in (36) is independent of z. In other words, the sheet edge cross-sectional shapes
at each z location are similar. Therefore,

Us_ 1 0A/0z _ 1 0_/00 _ 1 3{ (37)
ri dAcldz rl dTfcldO q Xc

where

= 2 a = _ q d_' (38a)
T 2

and

Xc = ---2At= ._ nat
T 2

(38b)

Since ,4 depends only on _, equation (37) shows that Us is now dependent on 0 (or z) only through Ac"

Substituting (37) into (34) gives the following result for ri(_,O):

[ 213/2(We) 2 x 1 + q_ + rioJL-vJ"°-
(39)

It is desirable to eliminate the 0 dependence in (39) so that an ordinary differential equation can be obtained.

This is done by making the following assumptions. First, it is assumed that in the region of the sheet edge,

q_ >> rl0. This is a good assumption for long sheets (L/W > 1) where the edge area, A c, grows slowly. Then
(39) becomes:
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rl_ + qoo = 1 1 _ 2 1+ q_)- 1 + 11_j
(40)

In solving (40), an approximation will be made to treat qO0 as an independent parameter.

As can be seen, by neglecting the q0 terms the only dependence on the fluid properties (p,o), occurs

through Ac, which depends on W/L (eq. (21)). Thus, for a given value of 7, c the sheet cross section is the same

for all fluids. Solution of equation (40) depends on the parameters Ac, "dRe, and q00, plus the boundary condi-

tions at _ = 0 and _ = _.

0rl --, oo (42a)
At _ = 0: q = 0, 0"_"

At = E q = 1, 011 = 0 (42b)

The total dimensionless cross-sectional area, '4c, must satisfy the condition 7. c = 7, (_), so that it is not a free

parameter. Instead "4c can be calculated directly from the flow conditions using the continuity equation (11)

with the Fr --* oo assumption so that w = wo = we and "r= xo. Therefore, combining equations (11) and (25)

yields:

Wro z (42a)
Ac=" 2 L

or

gc - W z (43b)
roL

As already mentioned, 1100is small for the flows of interest (L/W > 1). However, the two sets of bound-

ary conditions imply that two independent parameters, namely r/Re and q00, are needed in order to obtain a

physically meaningful solution. If q00 is neglected in (40), it is found numerically that a physically meaningful

solution can be obtained for only a unique value of Ac" Since q00 cannot be neglected, a simplifying assump-
tion is required to reduce (40) to an ordinary differential equation. The simplest assumption is that rl00 is a con-

stant. The procedure for solving (40) using this assumption will now be described, after which it will be shown

that this assumption does not yield the true solution. A different assumption will be made, namely rl00 = arl_.
Solutions were investigated using the fourth order Runge-Kutta numerical method (ref. 16).

At _ = 0, 11= 0, and q_ is infinite, so (40) must be solved analytically near this point. For _j --* 0, A _
q_ (eq. (38a)), so that A/rl _ 0 and (40) can be approximated by

ri_ _ -r

2] 3/2 2R e
1 + rl_jJ

for _j = 0 (43)

11



This is the equation for a circle with radius 2Re/T and centered at (_,rl) = (Re/'r,0). Therefore, the following are

used to calculate rl and q_ at the first step in the Runge-Kutta integration of (40):

(44)

2Retr - _ (45)

q_ _ q

The iterative method for solving (40) consists of setting initial values for "dRe, 1100,A c, and _, then run-

ning the Runge--Kutta routine to get revised values for A c and _. Eventually, 7, c and P converge to a set of val-

ues. Since "_c is kept equal to ,4 (P), and _ is defined where I]_ = 0, the value of 11must be checked to see if it

equals 1 at _. If not, a new guess for 1180 is made. The process is repeated until a physically meaningful solution

is obtained for the value of TIRe assumed.

This method was applied for several values of r/R e, and it was determined that a unique solution exists

for all values of Ac" The largest value of Ac investigated was 325 200, and the largest Ac which arises in the
experiments conducted to date is 2350. Thus it is concluded that a solution to (42) exists for all 7, c of interest,
and hence for all sheet flow conditions. Figure 5 shows a typical sheet edge shape for Ac = 1176, assuming q00

is a constant.

Under the assumption that rl00 is a constant, equation (40) breaks down for Ac < 457. Figure 6 shows the
two characteristic dimensions of the edge shape solution P and rlmax (fig. 5) as a function of "4c (=[Z/T][W/L]).

Both quantities appear to follow a trend for Ac > 457, but that trend breaks down for lower areas. Note that

Ac = 457 is the area at which 1100 = 0.

An examination of the behavior of qO0 as a function of Ac suggests that a constant WOOis not a good

assumption. First, it is known that the curvature in the thin part of the sheet must be zero, since this is essen-

tially a planar region of the sheet. But at the sheet edge, we have assumed rl00 constant. Except for the unique

position on the sheet where rl00 = 0, there is a discrepancy. Second, by figure 6, we see that rl00 < 0 for small

edge areas, but positive eurvature would be expected intuitively. The fluid which is just leaving the slit (where

z/L = 0 and hence '_c = 0) is planar, so rl0 = 0. As the fluid flows down the z-axis, the edges grow, so we

know rl0 > 0. Therefore, we must have q00 > 0 for at least the lowest range of Ac" Since, from figure 6, the
edge shape solutions break down where the z--curvature is negative, this intuitive violation appears to be related
to the breakdown in the theory. Finally, we have assumed the edge shapes to be similar at all stations along the

sheet in order to obtain equation (37). This implies (rlmax/_) would be approximately constant, but it is clear

from figure 6 that such is not the case. The assumption that rl00 is constant therefore produces an unsatisfactory
set of solutions.

The remedy is to make a better assumption on 1100which avoids these violations. Since surface tension is

presumed to act uniformly in all directions, a suitable assumption is to consider the curvature in the y--z plane to

be related to the curvature in the x-y plane. This is done by setting rl00 = aq_, where a is a constant which

replaces rl00 as a free parameter. Doing this, (40) becomes

1 1 _ 2 1 "r 1
rl_- 2(1 + a) + rl "_e + n_]

(46)
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Near_ _ O, this becomes

rl_ _ -'r

2]3/2 2Re(l + a)I + rl+j

for (47)

which istheequationfora circlewith radius2(I + a)Re/xand centeredatthepoint(_,rl)= [(I+ a)Re_,0].
Hence for_ _,0 we have:

2(1 + a)RePr -

q

(48)

(49)

Again, the Runge-Kutta algorithm reveals that solutions exist for all Ac" Figure 7 shows a typical cross-sectional

shape for an "4c of 1231. Note that the edge shape is changed considerably_as compared with the shape of fig-

ure 5. In figure 8, 7",qmax,_fqmax, Re/T and (x are plotted as a function ofA c In figure 8(b) the product _'rlmax
is shown as a function of A c. This linear dependence is the following.

_c = 0.731 7qmax (50)

If the shape is purely elliptical then using equation (38b),

a c =  sma., = c

7_B

_c = _rqmax = 0.785 rqmax (51)

Comparing equations (50) and (51) we see that the cross-sectional shape is nearly elliptical.

As figure 8 shows, the assumption that q00 = ctn_ does not result in any of the violations which occur-
red when q00 was assumed constant. First, P and qmax are in approximately the same ratio for all *c, indicating

similarity of the sheet edge shape along the flow. This is consistent with the simplifying assumption made about

the z dependence of A, (eq. (37)). Furthermore, the quantity (?rimax) is directly propo_ional to ,Tic, as expected.

Since rl_ = 0 on the thin portion of the sheet, we have q00 = 0 in this region the expected result. Finally, over

most of the edge we have rl_ < 0. Since for small "4c, 0t < 0,_we have q00 > 0 for small edge areas. By the

preceding discussion, this is the expected result. Note that at A c = 0, we must have P = 0, and therefore q is

discontinuous at _ = 0. Thus the theory cannot predict the shape solution as Ac --' 0.

The possible existence of oscillatory solutions (i.e., solutions having more than one local minimum for

> 0) was investigated numerically, and it was determined that such solutions do not exist. Instead,
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equation (40) quickly diverges for _ > P. Occasionally oscillatory solutions were observed, but these occurred

only when the assumed value of "4c was much larger than its true value obtained by integrating the area under

the shape curve. Also, such solutions were found to diverge when the step size was reduced. Therefore, only
one solution, such as that shown in figure 7, appears to exist for each/'c"

EXPERIMENTAL RESULTS

The objectives of the experimental program are twofold. The first is to verify the scaling relation (L/W

versus We from (21)). The second is to measure the edge cross section (_ and ¢lmax)" In the previous studies of

Chubb and White (ref. 13), and Chuhb and Calfo (ref. 14), a limited amount of scaling data was obtained. Most
of those results were obtained with small slit widths (W < 3.5 cm). For a space radiator system, however, larger

slit widths will be used. Therefore, the results reported here are for larger slit widths (12.5 cm < W < 25 em).

All the L/W versus We data were taken using low vapor pressure Dew Coming 705 silicone oil at vacuum con-

ditions (less than 10-2 torr). However, the edge cross-section results were done in the atmosphere using water as

the working fluid. Also, the edge shape data were obtained using small slit widths.

Experimental L/W Scaling Results

A schematic of the experimental facility used for the L/W scaling results is shown in figure 9. It consists

of a 30-era inner diameter stainless steel pipe 3.5 m long. The axis of the pipe is aligned with the gravity field.
Vacuum conditions exist inside the pipe with the pressure less than 10-2 ton'. Flow of the Dew Coming 705 sil-

icone oil through the narrow slits is maintained by pressurizing a 40-gal reservoir with nitrogen (nitrogen gas is

separated from the oil by a diaphragm to prevent gas entering the oil). The design of the slits is shown in fig-

ure 10. A length to slit thickness ratio, l/re = 7 was chosen to assure that fully developed laminar flow would
result.

Four slit widths were used: W-- 12.5, 18.75, 23.5, and 25 cm. For W= 12.5 cm, three thicknesses,

ro = 100, 200, and 300 pm, were run. For W= 18.75 cm thicknesses of'c o = 200 and 300 iam were run. Thick-

nesses of To = 100 and 200 lam were run for W = 23.5 cm, and for the W = 25 cm _lit a single thickness of ro
= 300 pm was investigated. The volumetric flow rate, Q, through these slits was found to satisfy the following

relation (ref. 7).

Q

3
At, roW (52)

12pl

Where Ap is the pressure drop across the slit and la is the viscosity coefficient. This result was derived for

steady flow of liquid between parallel planes by Lamb (ref. 17).

The flow velocity, %, was determined from the measured volumetric flow rate, Q.

Q (53)
Wo Wro

Flow rates were determined by measuring the pressure drop across a calibrated orifice in the supply line to the

slits rather than using (52). The velocity, We, was used to calculate the Weber number, We, using (17). The

length, L, of the sheet was measured with the aid of a video camera mounted on a translating table shown in
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figure 9. It is not possible to photograph a complete sheet in this facility. However, figure 11 shows a complete

sheet issuing from a small slit (W = 3.4 cm). This photograph is from Chubb and White (ref. 13). Note the tri-

angular shape of the sheet, which agrees with the calculated result (fig. 4(a)).

Scaling results are shown in figure 12 where L/W is plotted as a function of We. As can be seen the
experimental data points all lie close to the calculated result (21). The properties of Dew Coming 705 oil are

temperature-dependent with the density and surface tension given by the following relations that were obtained

from the Dew-Coming Company of Midland, Michigan.

p = 169 - 1.625T [p] = kg/m 3, IT] = K (54a)

o = 0.08614 _ __T [-o7 = N/m, [T] = K (54b)
6502

For the experimental results shown in figure 12, T = 98 °C.

The resuRs in figure 12 are for vacuum conditions. However, experiments in air using water as the sheet

fluid yield results that agree with (21). Only a limited range of Weber numbers (50 < We < 300) was investi-

gated in the atmospheric experiments. For high velocity flows in air an instability will occur that breaks up the
sheet flow.

Cross-Sectional Shape Experimental Results

The sheet was formed in the atmosphere using water as the working fluid. The photographic technique

employed is shown in figure 13. The dashed line represents the line of sight of the camera. A beam splitter and
two front faced mirrors were used in order to view both the front and side views of the sheet on the same

photograph. The tip of a wire was placed near the sheet edge in order to insure that both images on the photo-

graph were at the same point on the cylinder. Because the sheet edge moves away from the camera in the side

view, there was only one place in this view that was in focus. As a result, the camera was set on the tripod with

the ability to move forward and back. If the focus on the camera is not adjusted, then any place that is in focus

will have the same degree of magnification as any other place that is in focus. Realizing this, it was possible to
take a picture of the front view in focus, tape the lens to insure a constant focal length, and move the camera

forwards and back in order to get a number of points along the edge view of the sheet in focus.

The camera used was a Nikon F4 equipped with a fully extended bellows and a 200-mm Nikon lens,

with a +2 diopter close-up lens. Kodak TMAX 400 black and white film was used. Three different slit thick-

nesses (50, 80, and 100 lam) were used, and one set of data was collected from each. All the Slits were 3.4 em
wide.

Once a full, steady liquid sheet was formed the length of the sheet was measured. The wire tip was

placed near the edge, close to the top of the sheet and the distance from the tip of the wire to the top of the

sheet was measured. The camera and mirrors were placed so the wire would have the same length in each view

near the bottom of the frame. Two pictures were taken showing both views, and the lens was fixed in place to

ensure an equal degree of magnification for each picture. Two pictures were then taken showing just the front

view for greater clarity. Four or five pictures were taken showing different points in the edge view in focus.

This procedure yielded four or five data points along approximately 1 in. of the edge.
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At this point, a picture of a millimeter scale was taken in order to determine the degree of magnification

of the pictures after developing. Then the wire was moved down allowing the top of the next set of photographs
to be at the same point as the bottom of the previous set. The height of the wire tip was measured again and the

next set of pictures taken. A picture of the millimeter scale was taken after each set of pictures to check that the

degree of magnification was not changing. The length of the sheet was periodically measured to check that the

length of the sheet was staying constant.

Enlarged photographs were made for taking the ? and rlmax measurements. The pictures of the scale were
measured with a millimeter scale to determine the degree of magnification. Knowing the position of the wire

tip, the blown-up photograph of the scale could be used to determine the height of the point that appeared to be
in focus in each of the edge shots. The cylinder widths and thicknesses were measured to a resolution of a 64th

of an inch.

Knowing the dimensions of the slit, the total length of the sheet, and the height at which the data points
were taken, the dimensionless cross-sectional area of the edge, Ac, could be calculated using (42b). Knowing

the degree of magnification and the dimensions of the slit, rimax and _ could be calculated using (33). These

data and the theoretical predictions are shown in figure 14.

Figure 14 reveals a very interesting phenomenon. The edge appears to be oscillating in the flow direc-

tion, z. The edge quickly flattens out and then reforms in its basically elliptic shape. When the edge is in its

elliptic shape it is in good agreement with the theoretical predictions. The details of this cycle are shown in

figures 15 and 16. Figure 15 shows a cross section of the edge in the x-y plane; figure 16 is a photograph taken,
as described in figdure 13, of edge and plan views of the sheet. Figure 16(a) is a photograph of the edge very

near the top of the sheet, where the edge takes on a basically elliptic shape. Figure 16('o) shows the section of

the edge just below that shown in figure 16(a), where the edge goes through the flattening out and reforming

process. At the bottom of each photograph the front and side views of the wire tip can be seen. Also notice the

antisymmetrical waves (with lines of constant phase running parallel to the sheet edge) that appear next to the

edge in the plan view in figure 16.

The edge begins in its nearly elliptic shape, shown in figure 16(a). Due to the high curvature where the

edge connects to the sheet, the edge quickly flattens out to a "cigar" like shape, shown near the top of figure 16Co).

This appears in figure 14 as an increase in ? and a decrease in rimax" Instead of simply regaining its elliptic

shape, the edge goes through a rebuilding process where the edge has a "peanut" like shape. As the area of the

edge increases, qmax increases first on the inside of the previous edge. This can be seen best a third of the way

down the edge view of figure 16(b), where the inner part of the edge can be seen behind the outer part of the

edge. It is not clear whether the edge necks down between these two parts. This inner part of the edge grows
and engulfs the outer part to return to its elliptic shape. This appears in figure 14 as an increase in qmax and a

decrease in _. This is most noticeable in the 100-l_m slit.

As discussed earlier, the only edge shape solutions obtained analytically are elliptic (fig. 7). No _peanut"

or "cigar" like shapes, which were observed experimentally (fig. 15), were calculated. Assumptions were made

about the z-direction derivatives, q0 and ri00, in order to reduce the two-dimensional problem (34) to a one-

dimensional problem (46). Also, in (36) the edge shapes were assumed similar at each z-location in order to

reduce the problem to one dimension. However, the "peanut" and "cigar" shapes observed indicate that the

assumptions rio << rip, ri00 ffi ¢xri_, and similarity of the edge cylinders do not apply in those cases. Solutions
like the experimental Hcigar" and "peanut edge shapes requtre a three-dimensional formulation.
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SUMMARY

This study was a theoretical and experimental investigation of the fluid mechanics of thin liquid sheet

flows in vacuum. Surface tension forces at the edges of the sheet result in a triangular shape for the sheet of

width, W, and height, L. The flow coalesces to a point at the distance, L, with the fluid being accumulated at the

sheet edges. Theoretical results that include the gravity force acting in the flow direction yield a triangular shape
for the sheet. Extensive experimental data for L/W as a function of Weber number, We, agree with the theoreti-

cal result for no gravity force, L/W = W_FWee/8.Theoretical results show that for Froude numbers of experimental

interest the gravity force has negligible effect on L/W.

Solutions for the edge cross-sectional shape were obtained from a one-dimensional model that includes

only the surface tension forces. All calculated edge cylinder solutions are elliptic in shape. However, experimen-

tally it was found that the edges oscillate in the flow direction between elliptic, "cigar" and "peanut" like cross-
sectional shapes. There is agreement between the theory and experiment at the points where the elliptic shapes

occur. To account for "cigar" and "peanut" like shapes requires the theoretical model to be extended to three
dimensions.
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APPENDIX A

Continuity Equation Solution

The continuity equation for steady-state incompressible flow is the following.

Ou + __Or+ __Ow=0 (A-l)
Ox Oy Oz

where u, v, and w are respectively the x-, y-, and z-direction velocities. Referring to figure 2, if (A-l) is inte-

grated from 0 < y < s(x,z) then (A-l) becomes the following.

_ff_ Os _ Os = 0 (A-2)(su-')+ (sw_+ v=- u=._ w=._

where ti and ff are average velocities def'med as follows:

-ff = _l foS u ay
$

1 £s (A-3)_=s way

and since the flow is symmetric about the x-axis, v(y = 0) = 0.

At the sheet surface the fluid y--direction velocity, vs, must equal the surface speed, dsldt. Therefore, for

steady-state conditions,

ds Os Os (A-4)
--d = _=_ + w=Tz = _=

Using (A--4) in (A-2) yields the following

o(su-) + o(sw-) _ o (A-5)
Ox Oz

Since the gravity force and surface tension force (curvature in the y--z plane) in the z-direction are being

neglected, ffz << t2x" Therefore,

O(su-) _ -_ _s (A-6)
Ox Oz

Beginning at x = 0 where s = O, and zi = O, integrate with respect to x to obtain:

s-ff 1 -- OA (A-7)
2 Oz
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where

= 2 ._x sCx'_)_ CA-S)A(x,z)

is the sheet edge cross-sectional area for 0 -<x' <_x (fig. 2). When x = r(z), we have A = Ac and s_ = -(T/2)u e,

where Ac is the total sheet edge cross-sectional area. Therefore,

= 2 _r(z) s(x',z)dx' (A-9)A c(z)
./u
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Figure 1 .--Schematic of thin liquid sheet flow.
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Figure 10.--Typical slit plate for producing sheet flow.
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Figure 12.--Comparison of theoretical and experimental sheet
scaling.

Figure 11._Sheet flow of Dow-Corning 705 oil from a 3.4 cm

wide slit. _o= 109 p.m, I/._'o= 3.4, L/W = 9.6, wo = 11.1 m/s.
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Figure 13.mPhotographic set up for measuring end cross section.
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(a) Edge cylinder at z = 1.5 cm (z/L = 0.17)o

(b) Edge cylinder at z = 2.6 cm (z/L = 0.29).

Figure 16.--Photographs of plan edge views o! sheet
edge. W = 3.4 cm, ¢ = 1 O0 p.m, L = 8.9 cm.
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